Parkinson’s Protein α-Synuclein Binds Efficiently and with a Novel Conformation to Two Natural Membrane Mimics
نویسندگان
چکیده
Binding of human α-Synuclein, a protein associated with Parkinson's disease, to natural membranes is thought to be crucial in relation to its pathological and physiological function. Here the binding of αS to small unilamellar vesicles mimicking the inner mitochondrial and the neuronal plasma membrane is studied in situ by continuous wave and pulsed electron paramagnetic resonance. Local binding information of αS spin labeled by MTSL at positions 56 and 69 respectively shows that also helix 2 (residues 50-100) binds firmly to both membranes. By double electron-electron resonance (DEER) on the mutant spin labeled at positions 27 and 56 (αS 27/56) a new conformation on the membrane is found with a distance of 3.6 nm/ 3.7 nm between residues 27 and 56. In view of the low negative charge density of these membranes, the strong interaction is surprising, emphasizing that function and pathology of αS could involve synaptic vesicles and mitochondria.
منابع مشابه
TiO2 Nanoparticles as Potential Promoting Agents of Fibrillation of α-Synuclein, a Parkinson’s Disease-Related Protein
Background: In recent years, nanomaterials have been widely used in large quantities which make people bemore frequently exposed to the chemically synthesized nanoparticles (NPs). When NPs are introduced intoan organism, they may interact with a variety of cellular components with yet largely unknown pathologicalconsequences.Objective: I...
متن کاملClioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملClioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملα-Synuclein Misfolding and Aggregation in Parkinson’s Disease
Parkinson’s disease (PD) is a fatal neurodegenerative disorder that affects 1.5 millions Americans and 1 in 100 individuals over the age of 60. It results from neuronal atrophy localized within the substantia nigra pars compacta. Upon autopsy, PD patients have large intraneuronal fibrils, Lewy Bodies, composed of αsynuclein. Familial forms of PD result from the A30P and A53T mutations within α-...
متن کاملThe mode of α-synuclein binding to membranes depends on lipid composition and lipid to protein ratio.
Interactions of the presynaptic protein α-synuclein with membranes are involved in its physiological action as well as in the pathological misfolding and aggregation related to Parkinsons's disease. We studied the conformation and orientation of α-synuclein bound to model vesicular membranes using multiparametric response polarity-sensitive fluorescent probes together with CD and EPR measuremen...
متن کامل